An attractor neural network architecture with an ultra high information capacity: numerical results
نویسنده
چکیده
Attractor neural network is an important theoretical scenario for modeling memory function in the hippocampus and in the cortex. In these models, memories are stored in the plastic recurrent connections of neural populations in the form of “attractor states”. The maximal information capacity for conventional abstract attractor networks with unconstrained connections is 2 bits/synapse. However, an unconstrained synapse has the capacity to store infinite amount of bits in a noiseless theoretical scenario: a capacity that conventional attractor networks cannot achieve. Here, I propose a hierarchical attractor network that can achieve an ultra high information capacity. The network has two layers: a visible layer with Nv neurons, and a hidden layer with Nh neurons. The visible-to-hidden connections are set at random and kept fixed during the training phase, in which the memory patterns are stored as fixed-points of the network dynamics. The hidden-to-visible connections, initially normally distributed, are learned via a local, online learning rule called the three-threshold learning rule and there is no within-layer connections. The results of simulations suggested that the maximal information capacity grows exponentially with the expansion ratio Nh/Nv. As a first order approximation to understand the mechanism providing the high capacity, I simulated a naive mean-field approximation (nMFA) of the network. The exponential increase was captured by the nMFA, revealing that a key underlying factor is the correlation between the hidden and the visible units. Additionally, it was observed that, at maximal capacity, the degree of symmetry of the connectivity between the hidden and the visible neurons increases with the expansion ratio. These results highlight the role of hierarchical architecture in remarkably increasing the performance of information storage in attractor networks.
منابع مشابه
A Gaussian Attractor Network for Memory and Recognition with Experience-Dependent Learning
Attractor networks are widely believed to underlie the memory systems of animals across different species. Existing models have succeeded in qualitatively modeling properties of attractor dynamics, but their computational abilities often suffer from poor representations for realistic complex patterns, spurious attractors, low storage capacity, and difficulty in identifying attractive fields of ...
متن کاملبهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملA generalized ABFT technique using a fault tolerant neural network
In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...
متن کاملDesign, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques
ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015